Micro C exam, June 2012, Solutions

Thomas Jensen

1. (a) Let p denote the probability that player 1 plays A and let q denote the probability that player 2 plays A. In a mixed NE each player must be indifferent between his pure strategies, so we get the following equations:

$$
\begin{aligned}
C q & =1-q \\
-p & =-C(1-p)
\end{aligned}
$$

From these equations we get

$$
\begin{aligned}
p & =\frac{C}{1+C} \\
q & =\frac{1}{1+C}
\end{aligned}
$$

The probability of the outcome (A, A) is

$$
p q=\frac{C}{(1+C)^{2}}
$$

The expected payoff for player 1 is

$$
p q \cdot C+(1-p)(1-q) \cdot 1=\frac{C^{2}}{(1+C)^{2}}+\frac{C}{(1+C)^{2}}=\frac{C}{1+C}
$$

(b) The pure strategy NE can be found by underlining the best responses in the tri-matrix. There are three pure strategy NE:

$$
\left(A_{1}, A_{2}, A_{3}\right),\left(A_{1}, B_{2}, B_{3}\right), \text { and }\left(B_{1}, A_{2}, B_{3}\right)
$$

2. (a) See the game tree on the final page. There is one subgame, it starts at the decision node of player 2 and includes the rest of the game.
(b) There are two pure strategy subgame perfect Nash equilibria:

$$
(P, D, L) \text { and }(E, U, R)
$$

(c) There is one pure strategy Nash equilibrium that is not subgame perfect:

$$
(E, D, R)
$$

3. (a) Maximization problem for country $i(i, j \in\{Y, Z\}, j \neq i)$:

$$
\max _{s_{i} \in[0,1]} s_{i}+s_{j}-s_{i} s_{j}-s_{i}^{2}
$$

Use the first order condition to find the best response function:

$$
s_{i}=\frac{1}{2}-\frac{1}{2} s_{j}
$$

Thus the conditions for $\left(s_{Y}^{*}, s_{Z}^{*}\right)$ to be a NE are:

$$
\begin{aligned}
s_{Y}^{*} & =\frac{1}{2}-\frac{1}{2} s_{Z}^{*} \\
s_{Z}^{*} & =\frac{1}{2}-\frac{1}{2} s_{Y}^{*}
\end{aligned}
$$

Solve this system of equations to get:

$$
s_{Y}^{*}=s_{Z}^{*}=\frac{1}{3}
$$

(b) The social optimum when the two countries contribute equally can be found by solving the following problem:

$$
\max _{s \in[0,1]} 2(s+s-s s)-2 s^{2}
$$

By the first order condition we get:

$$
\bar{s}=\frac{1}{2}
$$

Thus we see that $\bar{s}>s_{i}^{*}$. So in the NE the countries use too little of their military capacity relative to the social optimum. This is because of positive externalities. When decisions are made independently country i does not take into account the positive effect that an increase in s_{i} has on the utility of country j.
(c) Trigger strategy for country i :

- Play $s_{i}=\frac{1}{2}$ if $t=1$ or if the outcome of all previous stages was $s_{Y}=s_{Z}=\frac{1}{2}$
- Play $s_{i}=\frac{1}{3}$ otherwise

Best response for country i to $s_{j}=\frac{1}{2}$ (use the best response fct from question a):

$$
s_{i}=\frac{1}{2}-\frac{1}{2}\left(\frac{1}{2}\right)=\frac{1}{4}
$$

Payoff for country i in the NE, the social optimum, and when best responding to $s_{j}=\frac{1}{2}$:

$$
\begin{aligned}
\pi^{N E} & =\frac{1}{3}+\frac{1}{3}-\left(\frac{1}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}=\frac{4}{9} \\
\pi^{S O C} & =\frac{1}{2}+\frac{1}{2}-\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}=\frac{1}{2} \\
\pi^{D E V} & =\frac{1}{4}+\frac{1}{2}-\frac{1}{4} \frac{1}{2}-\left(\frac{1}{4}\right)^{2}=\frac{9}{16}
\end{aligned}
$$

Thus the inequality for the trigger strategies to constitute a SPNE is:

$$
\begin{aligned}
\sum_{t=1}^{\infty} \delta^{t-1} \pi^{S O C} & \geq \pi^{D E V}+\sum_{t=2}^{\infty} \delta^{t-1} \pi^{N E} \\
& \Longleftrightarrow \\
\sum_{t=1}^{\infty} \delta^{t-1} \frac{1}{2} & \geq \frac{9}{16}+\sum_{t=2}^{\infty} \delta^{t-1} \frac{4}{9} \\
& \Longleftrightarrow \frac{9}{16}+\frac{4 \delta}{9(1-\delta)}
\end{aligned}
$$

(This inequality reduces to $\delta \geq \frac{9}{17}$).
4. (a) See figure 4.2.8 and/or 4.4.4 in Gibbons. The most important point is that $e(H)=e_{S}>e^{*}(H)$, the high type chooses a higher level of e than in the full info benchmark (otherwise the low type would imitate him). The low type behaves as in the full info benchmark: $e(L)=e^{*}(L)$.
(b) The only separating PBE is:

$$
[(R, L),(d, u), p=0, q=1]
$$

I.e., type 1 sends the message R, type 2 sends the message L. After seeing the message L, the receiver chooses the action d. After seeing the message R, he chooses the action u.
2. (a) Game tree

